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Abstract Perceptual control theory (PCT) views behavior as
being organized around the control of perceptual variables.
Thus, from a PCT perspective, understanding behavior is
largely a matter of determining the perceptions that organisms
control—the perceptions that are the basis of the observed
behavior. This task is complicated by the fact that very often
the perceptions that seem to be the obvious basis of some
behavior are not. This problem is illustrated using a simple
pursuit-tracking task in which the goal was to keep a cursor
vertically aligned with a target set at various horizontal dis-
tances from the cursor. The “obvious” perceptual basis of the
behavior in this task is the vertical distance between cursor
and target. But a control model suggests that a better descrip-
tion of the perceptual basis of the behavior is the angle
between cursor and target. The experiment shows how a
control model can be used to do the test for the controlled
variable, a control-theory-based approach to distinguishing
the actual from the apparent perceptual basis of any behavior.
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Perceptual control theory (PCT) assumes that the behavior of
organisms is organized around the control of perceptual var-
iables (Marken, 1982; Powers, 2005). Thus, from a PCT
perspective, understanding behavior is largely a matter of
discovering the perceptions that an organism controls, which
is equivalent to determining the perceptual basis of the organ-
ism’s behavior. The perceptions that an organism controls are

called controlled variables . So, understanding the perceptual
basis of behavior is a matter of identifying the controlled
variables around which behavior is organized.

What are you doing?

The idea of trying to understand behavior in terms of the
perceptions that an organism controls may seem somewhat
strange, but it is actually something we do quite often in
everyday life. In particular, we are doing it when we see
people doing something and ask ourselves what they are
doing. When you think about it, this is an odd question to
ask when the behavior we are asking about is happening right
before our eyes. But the question rarely strikes us as odd
because we know we are asking, not about the behavior we
can see but, rather, about the purpose of that behavior—what
these people are trying to accomplish—which is not easy to
see at all. The reason for this, according to PCT, is that purpose
is a perception in the brains of those doing the behavior.

The concept of purpose as perception can be illustrated by
considering the purpose of your opponent’s behavior in a
game such as chess. The behavior that is easy to see is each
of the opponent’s moves. The behavior that is hard to see is the
purpose of these moves. It is difficult to see the opponent’s
purpose because it is a perception that the opponent is pro-
ducing for him- or herself. In the chess game, it is a perception
of the relationship between the pieces on the board. The
problem of determining the opponent’s purpose results from
the fact that there are many different ways to perceive the
same set of relationships. For example, the relationship be-
tween pieces on the board that results from the opponent’s
move could be seen as a threat of capture, as solidifying the
opponent’s “control of the center,” or as setting a trap. The
purpose of the opponent’s move is to produce one (or more) of
these perceptions, you just don’t know which.
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The process of acting to produce a particular perception—
such as a particular relationship between pieces on the chess
board—is called control (Marken, 1990). Like purpose, con-
trol involves the production of preselected perceptions and
doing so in the face of unpredictable disturbances, such as the
moves that you make in response to those of your opponent.
Thus, determining the purpose of behavior is equivalent to
determining the perceptions that the person is controlling. It is
difficult to determine what these perceptions are because they
exist only in the brain of the person doing the controlling.

Jumping to conclusions

The difficulty of determining a person’s purposes—the per-
ceptions they control—does not stop us from jumping to
conclusions about what those purposes are. This may result
from the apparently innate inclination of humans (and, possi-
bly, some nonhuman primates) to understand behavior in
terms of inferences about its purpose (Heider & Simmel,
1944; Premack & Woodruff, 1978). The tendency to jump to
conclusions about the purpose of behavior can be a particular
problem for psychologists who are trying to understand the
nature of purposeful behavior (Marken, 1992). This is because
a correct understanding of any particular example of purpose-
ful behavior requires that the actual purpose of that behavior
be accurately identified (Marken, 2002).

The problem of jumping to conclusions about the purpose
of behavior can be illustrated using a simple pursuit-tracking
task, like that shown in Fig. 1. In this task the participant is
asked to keep a cursor, c , aligned with a moving target, t . The
subject sees just the purple oval target and green oval cursor,
both moving in a vertical path on the computer screen. The
cursor moves as a result of the participant’s mouse movements,

q .o ; the target moves as a result of time variations in a
computer-generated disturbance, d . This is a control task in
which the participant’s purpose—the perception to be con-
trolled—seems obvious. It is a perception of zero distance
between cursor and target: t − c = 0. This is certainly the
assumption made in most studies of tracking (Jagacinski &
Flach, 2002). However, this assumption may be wrong; other
aspects of the relationship between target and cursor might be
the perception being controlled in this task. In order to see why
this might be the case, it is necessary to look at a model of the
behavior in this tracking task.

PCT model of purposeful behavior

Figure 2 is a diagram of the basic PCT model of the behavior
in a pursuit-tracking task. The participant in this task is viewed
as a control system controlling a perceptual representation of
the distance between target and cursor (t − c ). This distance,
called q .i in the diagram, is the input to the control system. A
perceptual input function, I , transforms q .i into a perceptual
signal, p , which is compared to a reference signal, r, that
specifies the desired state of that perception. The comparison
is performed by a comparator, C , which continuously com-
putes the difference between p and r, r − p . This difference is
a time-varying error signal, e , that drives the participant’s
outputs, q .o , via the output function, O . These outputs have
a feedback effect, via q .i and p , on the error signal that is the
cause of those outputs.

The behavioral organization diagrammed in Fig. 2 repre-
sents a closed-loop system in which inputs cause outputs
while, at the same time, outputs cause inputs. When the effect
of outputs is to reduce the error that is causing those outputs,
the system in Fig. 2 is a negative feedback control system.

Fig. 1 Pursuit-tracking task in which the participant is to keep a cursor
aligned with a target that moves in a randomly varying vertical path
caused by a computer-generated disturbance

Fig. 2 Perceptual control theory (PCT) model of behavior in the pursuit-
tracking task
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Such a system controls in the sense that it keeps a perception,
p , close to the reference signal, r, protected from disturbance,
d (Powers, 2005). In the pursuit-tracking task, this systemwill
keep its perception of the difference between target and cursor
close to the reference signal value (assumed to be zero),
protected from disturbance, which is the changing position
of the target.

Control of perception

The fact that a control system, like that shown in Fig. 2,
controls a perception means that you cannot really tell what
it is doing—its purpose—by looking at its visible behavior.1

In a pursuit-tracking task, the visible behavior of the partici-
pant consists of the movements of the mouse, q .o , as well as a
measure of the average deviation of cursor from the target. If
mouse movements keep the cursor near the target, so that the
average deviation between cursor and target is small, an
observer is likely to conclude that the subject’s purpose is to
control t − c . But since it is actually a perception that is being
controlled, there are other possibilities, as is illustrated in Fig. 3.

Figure 3 shows two possible perceptions that might be
under control in the pursuit-tracking task. The upper diagram
in Fig. 3 shows the perceptual function, I , computing a per-
ception, p1, that is proportional to the difference between t
and c :

p1 ¼ k t–cð Þ: ð1Þ

This is the perception that an observer is likely to conclude
is the one being controlled in the pursuit-tracking task.

The lower diagram in Fig. 3 shows another possibility. In
this case, the perceptual function, I , is computing a perception,
p2, that is proportional to the angular separation between t and
c . This angle depends on both the vertical distance between
target and cursor, t − c , as well as the horizontal distance
between target and cursor, s . The perceptual function is as-
sumed to carry out the equivalent of computing the arcsine of
the tangent of the triangle connecting target and cursor:

p2 ¼ arcsine t–cð Þ=s½ �: ð2Þ

Testing for the controlled variable

The two perceptions, p1 and p2, that might be the basis of the
purposeful behavior in the pursuit-tracking task are possible

controlled variables. According to PCT, understanding the
purposeful behavior in this (or any) task is largely a matter
of determining which perception is actually under control: that
is, determining the controlled variable. This can be done using
a control-theory-based methodology called the test for the
controlled variable , or TCV (Marken, 2009; Powers, 1979;
Runkel, 2003).

The TCV is based on the fact that a variable that is under
control—a controlled variable—will be protected from distur-
bance by the actions of a control system. In the pursuit-
tracking task, the variation in target position is a disturbance
to both the target–cursor distance (p1) and the target–cursor
angle (p2). Typically, the only variable thought to be under
control in pursuit tracking is target–cursor distance. The effect
of target movement on target–cursor distance is measured in
terms of RMS error—the square root of the average distance
between cursor from target. To the extent that RMS error is
close to zero, the perception of target–cursor distance is con-
sidered to be under control. However, this result is also con-
sistent with the possibility that the variable that is actually
under control is target–cursor angle. This is because distur-
bances created by target movement have the same effect on
target–cursor angle—arcsine[(t − c )/s ]—as they do on target–
cursor distance—k (t − c ).

The TCV starts with a hypothesis regarding the perceptual
basis of a particular behavior. In the case of this pursuit-
tracking task, two hypotheses can be tested simultaneously:
the perceptual basis of tracking behavior—the controlled var-
iable—is either (1) target–cursor distance or (2) target–cursor
angle. These two hypotheses can be tested by applying a
disturbance that would be expected to have an effect on one
of these perceptions but not the other. Since, according to
Eqs. 1 and 2, the horizontal separation between target and
cursor, s , affects only target–cursor angle, and not target–
cursor distance, variations in s should disturb target–cursor
angle but not distance.

1 Human behavior presumably involves the control of many perceptions
simultaneously. But it should be noted that not everything that a person
perceives can be (or is being) controlled. Figure 2 shows that only those
perceptions that are affected by the system’s output can be controlled, so
only these perceptions can be the basis of observed behavior.

Fig. 3 Possible perceptions controlled in the pursuit-tracking task: (top)
the vertical distance between target and cursor, t − c , and (bottom) the
angular separation between target and cursor, arcsin(t − c)/s
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In most applications of the TCV, the controlled variable is
revealed by lack of an effect of disturbances to the hypothet-
ical controlled variable due to the compensatory actions of the
participant (Runkel, 2003). Thus, it would be concluded that
the participant is controlling target–cursor angle if variations
in s had less than the expected effect on this variable. How-
ever, in the present case, the participant cannot compensate for
the effect of variations of s on target–cursor angle. Therefore,
a version of the TCV that uses computer simulation (Marken,
2005) must be used to determine the nature of the expected
effect of variations in s on tracking performance, depending
onwhether the participant is controlling target–cursor distance
or angle. The behavior of the computer simulation can then be
compared to that of the human participant to see which hy-
pothesis about the variable under control produces simulation
data that give the best fit to the human data.

Mathematical basis of the computer simulation

A computer simulation of the behavior in the pursuit-tracking
task is based on the PCT model diagrammed in Figs. 2 and 3.
The model can be represented by a set of three equations that
can be turned into computer program statements. The first
equation, called the system function , describes the behavior of
the system (a human, in this case) doing the tracking:

q:o ¼ k:o r–pð Þ: ð3Þ

This equation says that variations in output (q .o ; i.e., the
mouse movements in a tracking task) are proportional to
variations in an error signal, r − p , that is the difference
between a reference specification, r, and a perception, p , of
the relationship between target and cursor. The constant of
proportionality, k .o , is the output gain : the amount of output
produced per unit error.

The second equation, called the environment function ,
describes the physical relationships between system outputs
and inputs:

q:i ¼ k:e q:oð Þ þ k:d dð Þ: ð4Þ

This equation says that variations in the input to the system,
q .i , are proportional to the sum of the effects of variations in
output, q .o , and disturbance, d . In the pursuit-tracking task
q .i is the time-varying difference between target and cursor.
Equation 4 says that this difference depends on a mouse
movement, q .o , which determines the state of the cursor,
and a time-varying disturbance, d , which determines the state
of the target. The constant k .e in Eq. 4 is the feedback function
that relates system output, q .o , to input, q .i , whereas k .d is
the disturbance function that determines the effect of the
disturbance on target movements. In the present pursuit-
tracking task, both k .e and k .d are equal to 1.

Finally, the third equation defines the perceptual function
that transforms the input variable, q .i , defined in the system
function equation (4), into the perceptual variable, p , defined
in the environment function equation (3):

p ¼ k:i q:ið Þ: ð5Þ
In this equation, k .i represents either of the two perceptual

functions described by Eqs. 1 and 2. The computer simulation
can be run with each of these different functions, to see which
gives the best fit to the behavior observed in a pursuit-tracking
task.

Computer simulation

A computer implementation of the equations that define the
PCT model of pursuit tracking is described in the following
set of pseudocode program statements:

For i ¼ 1 to NSamples ð6:1Þ
t :¼ d i½ � ð6:2Þ
c :¼ q:o ð6:3Þ
q:i :¼ t − c ð6:4Þ
p :¼ k:i q:ið Þ ð6:5Þ
q:o :¼ q:oþ k:o r − pð Þ − q:o½ �=slow ð6:6Þ
Next i ð6:7Þ

This code assumes that one trial of a pursuit-tracking task
consists of NSamples of a time-varying disturbance that de-
termines the position of the target over the course of the trial.
The code in Display 6 loops through the NSamples, setting the
target position, t , to the current value of the disturbance, d [i ],
and setting the cursor position, c , to the current value of the
output, q .o , produced by the simulated tracker. The difference
between t and c in each sample interval is the input variable,
q .i . The input is then transformed into a perception by a
perceptual function, k .i (q .i ), that produces perception p1 or
p2, as defined by Eqs. 1 and 2, respectively. Finally, a new
value of the output, q .o , is calculated as an increment to the
current value, the size of the increment being proportional, by
the gain factor k .o and a slowing factor, slow, to the difference
between a reference specification, r, and the perception, p .

Program statements 6.1–6.4 implement the environment
function described by Eq. 4; statement 6.5 carries out the
perceptual function implied by Eqs. 1 and 2; and statement
6.6 implements the system function described by Eq. 3. The
system function in statement 6.6 is implemented as a “leaky
integration” in order to take into account the fact that the
variables in the tracking task are changing over time.
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Pursuit-tracking experiment

Two participants, R.M. and M.T., were tested in a computer-
based pursuit-tracking task. The target and cursor appeared on
the screen as shown in Fig. 1. The target moved vertically,
driven by a computer-generated filtered random noise distur-
bance. The participant kept the cursor as closely aligned with
the target as possible by moving the mouse forward or back to
move the cursor up or down. The horizontal separation be-
tween target and cursor, s , was different on different trials,
with the distance ranging from 0 to 980 pixels. The center
frequency of the noise disturbance determined the difficulty of
the task in terms of the speed of the oscillatory movements of
the target; a disturbance with a low center frequency resulted
in a slowly moving target, and thus an easier task, than one
with a high center frequency.

After several practice trials, the participants performed two
tracking trials, one with an easy and one with a difficult
disturbance, at five different horizontal separations between
target and cursor, for a total of ten trials. Each trial lasted
1 min, and the trials were presented in a random order.

Comparing the control model to human behavior

Figure 4 shows how well the behavior of the PCT model
compared to that of a human participant during a segment of
one trial in a compensatory tracking task. The figure shows the
cursor movements made by a human participant (labeled
Human) and the PCT model controlling p1 (the cursor–target

distance, labeled Distance Control) and p2 (cursor–target an-
gle, labeled Angle Control) during a 15-s segment of a pursuit-
tracking task. The horizontal distance between target and
cursor (s ) during this trial was 980 pixels (20 cm). The figure
also shows movements of the target (labeled Target) during
this segment of the task.

It is clear from Fig. 4 that the behavior (cursor movements)
of both the distance control and angle control models close-
ly approximates that of the human. The next step in the
TCV is to determine which model provides a better fit to the
human data. Because the models make different predictions
about the effect of variations in horizontal target–cursor
separation, s , on behavior, it is possible to determine which
model is best by comparing the behavior of the models to
that of the human at different values of s . Since the models
control different perceptions, the model that gives the best
account of the data can be considered to be controlling a
perceptual variable that is most like the one controlled by
the humans.

The models were tested by having the computer version of
each model (the code in Eq. 6) perform the same tracking task
as the human participants; the computer tracked the same
target movements at the same horizontal separations between
target and cursor, s , as did the human participants. The per-
formance of both human participants and the models was
measured as the ability to control the vertical distance between
cursor and target, keeping it close to zero. The measure of
control used was the ratio of the observed variance in target–
cursor deviation, var(t − c ), to the variance of the target,
var(t ), which can be considered the expected variance of

Fig. 4 Human and model cursor movements and target movement during a 15-s period of a pursuit-tracking task with a horizontal separation of 980
pixels (20 cm) between target and cursor
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t − c if the participant did nothing (so that c was constant). If
control is good, var(t − c ) will be very small relative to var(t ),
so the ratio var(t − c )/var(t ) will be very small. The negative
log of this ratio is taken, so that the better the control [i.e., the
smaller the ratio var(t − c )/var(t )], the larger the number
representing the quality of control.

Tests based on performance measures The behavior of the
distance and angle control models was fit to the human per-
formance data by adjusting the slowing and gain parameters to
get the closest fit of the model to human performance at each
separation. Figure 5 shows measures of performance at dif-
ferent horizontal separations, s , of cursor and target for the
two human participants (R.M., M.T.), as well as for the best-
fitting versions of the distance and angle control models. The
human performance results are shown as solid black dia-
monds. The performance of both humans declines as s in-
creases. This decline is captured by the angle control model
(solid blue triangles), but not by the distance control model
(solid red squares). Indeed, the performance of the distance
control model is nearly the same at all values of s for both
participants. The performance of the distance control model
even increases slightly for the trials performed by participant
R.M.

The fit of the models to the human performance data can be
measured in terms of the squared correlation, R2, between
human and model performance at each separation, s . The R2

for the fit of the distance control model to the human perfor-
mance, averaged over M.T. and R.M., was .51, whereas the

average R2 for the fit of the angle control model to the human
performance was .99. Clearly, the angle control model fits the
human performance data much better than does the distance
control model in terms of the decline in tracking performance
with increasing s .

The decline in performance for the angle control model
results from the fact that s is included in the calculation of the
controlled variable, arctan[(t − c )/s ]. Increases in s affect the
controlled angle variable in a way that reduces the loop gain of
the control system. Loop gain is the product of all gain factors
around the control loop. In the model described by Eqs. 3–5,
the gain factors are k .i (input function), k .o (output function),
and k .e (feedback function). So, the loop gain is proportional
to the product k .i*k .o*k .e : The higher the loop gain in a
control loop, the better the control (in terms of keeping the
controlled variable close to the reference, r ). If angle is the
controlled variable, then k .i is proportional to the derivative of
arctan(t − c )/s . So,

k:i ¼ s= s2 þ t–cð Þ2
h i

: ð7Þ

Since the distance between target and cursor (t − c ) during
a tracking trial is typically being kept relatively small, k .i will
decrease exponentially as s increases, resulting in the decrease
in performance of the angle control model.

Improving the fit of the models to the human performance
data It is possible that the poor fit of the distance control
model to the human performance data results from the fact
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Fig. 5 Measures of performance of two human participants and of the distance, angle, threshold distance, and angle control + noise models
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that the perception of vertical target–cursor distance degrades
with increasing horizontal separation, s . Thus, it should be
possible to improve the fit of the distance control model by
degrading the perception of distance with a “threshold” band.
This band was placed around the value of the distance per-
ception, t − c , such that only variations in this variable that are
outside of the band are perceived. The width of this threshold
band increased with increasing s . By appropriate selection of a
threshold width for each value of s , it was possible to match
the performance of the distance control model to that of the
human participants quite well, as can be seen in the plots of the
threshold distance model (the open red squares in Fig. 5).

In order to capture the decline in human performance with
increasing s , four parameters, representing the width of the
threshold band, must be estimated for the threshold distance
model. This decline is captured “automatically” by the angle
control model through its inclusion of a number proportional
to the value of s—the psychological value of s—in the
calculation of the controlled angle perception, which reduces
the loop gain with increasing s . However, the performance of
the angle control model is much better than that of the humans
at all values of s , as can be seen by the fact that, for both R.M.
and M.T., the plot of the performance of that model as a
function of s (solid blue triangles in Fig. 5) runs parallel to
but is much higher on the graph than that for the human data.

The angle control model can be made to more closely
approximate the human performance by adding low-pass-
filtered random noise to the output of the model. The noise

amplitude that produced the best fit for the angle control
model was 3 % of the output range. This level of noise seems
to be of the correct order of magnitude, on the basis of
estimates of the magnitude of neural noise levels derived from
neurophysiologic measures (Miller & Troyer, 2002; Nakajima
et al., 1978). The performance of the angle control model with
added noise (the open blue triangles in Fig. 5; Angle Control +
Noise) can be seen to fit the human performance data as well
as the threshold distance model.

Since the noise level added to the angle control model was
the same for all values of s , only one parameter (noise ampli-
tude) was estimated to achieve the fit of the angle control
model to the human data, whereas four parameters—the
threshold widths at the different horizontal separations,
s—were required to get the same fit for the threshold distance
model. Also, the distance control model includes no mecha-
nism that explains the increase in threshold width with the
increase in s . Therefore, parsimonywould seem to recommend
a model that controls angle over one that controls distance as
giving the best account of the human data in this task.

However, before concluding that angle is the controlled
variable in this task, it is possible to make a more detailed
comparison of the models by measuring how well they fit the
detailed cursor movements made by the human participants on
each trial. If the two models were equally good predictors of
overall tracking performance, they would be expected to do
equally well at accounting for the detailed time variations in
human cursor movements (shown in Fig. 4).
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Fig. 6 Fits of the angle control + noise and distance threshold models to the human data. RMS, root-mean square error
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Tests based onmodel fit to detailed cursormovements Figure 6
shows the average RMS deviations of model from human
cursor movements for the two models that gave equally good
fits to the human performance data—the threshold distance
and angle control + noise models. The fits of the models are
shown as a function of the horizontal separation of target from
cursor, s . The difference in average RMS deviation of the two
models from the time variations in human cursor movements
is significant for both M.T. [t (4) = 3.37, p < .011] and R.M.
[t (4) = 2.76, p < .025]. The results in Fig. 6 show that the
angle control + noise model gives a much better fit to the
human data than does the threshold distance model at all
values of s , but particularly at larger values of s . This is strong
evidence that angle rather than distance is the perception
controlled in this tracking task: The hypothesis that distance
is the perceptual basis of tracking can be rejected.

A close look at the time traces of the human and model
cursor movements suggests why the angle control + noise and
threshold distance models account for the performance data
equally well (Fig. 5), whereas the angle control + noise model
accounts for the detailed human cursor variation data much
better than does the threshold distance model (Fig. 6). The
observed decrease in the performance of the two models with
increasing s , as can be seen in Fig. 5, results from different
characteristics of the detailed behavior of each model. The
poorer performance of the angle control + noise model with
increasing s results from the fact that, as with the human, the
variation of model cursor movements around the target in-
creased as s increased, a reflection of the decreased gain of the
control model with increasing s . On the other hand, the poorer
performance of the threshold distance model with increasing s
resulted from the fact that, unlike the human cursor movements,
themodel cursor movements remained a constant distance from
the target, a distance that increased with increasing s .

Understanding behavior in terms of controlled variables

The comparison of themodels controlling different perceptions
suggests that angle rather than distance is likely to be the
perceptual basis of behavior in the pursuit tracking task. The
purpose of the participants’ behavior—mouse movements—in
this task is to keep the target–cursor angle rather than distance
close to 0.0. Although this is an interesting and counterintuitive
finding—since, as mentioned above, causal observation sug-
gests that the participant’s purpose in this task is to control the
distance between cursor and target—it may not be considered
particularly significant, since tracking is not a particularly
significant behavior. But this research demonstrates a method-
ology—the TCV—that can serve as the basis for understand-
ing any example of purposeful behavior in terms of the per-
ceptions that are under control. It is a methodology that differs

from more familiar, traditional methodologies that do not take
the purpose of behavior into account (Marken, 2013).

The approach to understanding purposeful behavior dem-
onstrated in this research has been used to understand “real-
world” examples of purposeful behavior, including the
hording behavior of rats (Bell & Pellis, 2011), the posture
control of crickets (Pellis, Gray, Gray, & Cade, 2009), the
parenting behavior of chimps (Plooij, 1984), the shock avoid-
ance behavior of rats (Powers, 1971), the object interception
behavior of humans and canines (Marken, 2005; Shaffer,
Krauchunas, Eddy, & McBeath, 2004; Shaffer, Marken,
Dolgov & Maynor, in press), and the self-image control
behavior of college freshmen (Robertson, Goldstein,
Mermel, & Musgrave, 1999). Clearly, the TCV can be used
to understand purposeful behaviors that involve the control of
perceptions that are more complex than distances and angles.

Author note I acknowledge the assistance of Martin M. Taylor, who
wrote the pursuit-tracking program and participated in the experiment as
participant M.T.
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